Condition Numbers of Gaussian Random Matrices

نویسندگان

  • Zizhong Chen
  • Jack J. Dongarra
چکیده

Abstract. Let Gm×n be an m × n real random matrix whose elements are independent and identically distributed standard normal random variables, and let κ2(Gm×n) be the 2-norm condition number of Gm×n. We prove that, for any m ≥ 2, n ≥ 2, and x ≥ |n − m| + 1, κ2(Gm×n) satisfies 1 √ 2π (c/x)|n−m|+1 < P ( κ2(Gm×n) n/(|n−m|+1) > x) < 1 √ 2π (C/x)|n−m|+1, where 0.245 ≤ c ≤ 2.000 and 5.013 ≤ C ≤ 6.414 are universal positive constants independent of m, n, and x. Moreover, for any m ≥ 2 and n ≥ 2, E(log κ2(Gm×n)) < log n |n−m|+1 + 2.258. A similar pair of results for complex Gaussian random matrices is also established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Condition Numbers of Random Toeplitz and Circulant Matrices

Estimating the condition numbers of random structured matrices is a well known challenge (cf. [SST06]), linked to the design of efficient randomized matrix algorithms in [PGMQ], [PIMR10], [PQ10], [PQ12], [PQZa], [PQa], [PQZb], [PQZC], [PY09]. We deduce such estimates for Gaussian random Toeplitz and circulant matrices. The former estimates can be surprising because the condition numbers grow ex...

متن کامل

TR-2012013: Condition Numbers of Random Toeplitz and Circulant Matrices

Estimating the condition numbers of random structured matrices is a well known challenge (cf. [SST06]), linked to the design of efficient randomized matrix algorithms in [PGMQ], [PIMR10], [PQ10], [PQ12], [PQZa], [PQa], [PQZb], [PQZC], [PY09]. We deduce such estimates for Gaussian random Toeplitz and circulant matrices. The former estimates can be surprising because the condition numbers grow ex...

متن کامل

TR-2014009: Estimating the Norms of Random Circulant and Toeplitz Matrices and Their Inverses II

We combine some basic techniques of linear algebra with some expressions for Toeplitz and circulant matrices and the properties of Gaussian random matrices to estimate the norms of Gaussian Toeplitz and circulant random matrices and their inverses. In the case of circulant matrices we obtain sharp probabilistic estimates, which show that the matrices are expected to be very well conditioned. Ou...

متن کامل

Spectral fluctuation properties of constrained unitary ensembles of Gaussian–distributed random matrices

We investigate the spectral fluctuation properties of constrained ensembles of random matrices (defined by the condition that a number NQ of matrix elements vanish identically; that condition is imposed in unitarily invariant form) in the limit of large matrix dimension. We show that as long as NQ is smaller than a critical value (at which the quadratic level repulsion of the Gaussian unitary e...

متن کامل

TR-2013015: Estimating the Norms of Random Circulant and Toeplitz Matrices and Their Inverses

We estimate the norms of standard Gaussian random Toeplitz and circulant matrices and their inverses, mostly by means of combining some basic techniques of linear algebra. In the case of circulant matrices we obtain sharp probabilistic estimates, which show that these matrices are expected to be very well conditioned. Our probabilistic estimates for the norms of standard Gaussian random Toeplit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2005